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Abstract. We study wave propagation in a hot collisionless two-component plasma by 
working in a Lorentz frame of reference in which the spatial dependence is eliminated and 
where there is no ambient magnetic field. We obtain non-linear dispersion relations which 
govern transverse propagation for the cases: (i) when the temperature correction is small 
but the wave amplitude is large; (ii) when the wave amplitude is small and the temperature 
is arbitrary. 

1. Introduction 

Following Clemmow (1974, 1975), we study non-linear wave propagation in a hot, 
collisionless plasma consisting of electrons and ions. We assume that the plasma is 
unbounded and that there is no ambient magnetic field. The model used is the 
Boltzmann-Vlasov equations (BV equations) in a Lorentz frame of reference S in which 
the space-dependence is eliminated (Winkles and Eldridge 1972). 

We investigate tranverse waves for the two following cases, using a perturbation 
technique. (i) When the plasma is not extremely hot so that the temperature effect can 
be treated as a small correction to the cold plasma case and the amplitude of the wave is 
large. (ii) When the wave amplitude is small and there is no restriction on the 
temperature. In both cases, the dispersion relations are obtained and the results are 
presented in such a way that the electron and ion effects stand out separately. 

The plan of the paper is as follows: § 2 presents a general formulation of the 
problem, while § 3 specializes to transverse propagation and develops the master 
equations (15) and (16). In § 3.1 we record the results for the cold plasma. The main 
results of this paper are given in 0 3.2 and § 3.3 which describe the dispersion relations 
for strong waves (i.e. large amplitude) with first-order temperature effect, and for weak 
waves (i.e. small amplitude) with first-order non-linear correction, keeping tempera- 
ture arbitrary. 

2. General formulation 

We consider S’ as the laboratory frame in which the velocity of the wave is (0, 0, c / n )  
and S is the frame in which there is no space dependence and which is moving with 
velocity (0, 0, nc)  relative to S‘ (n being the refractive index of the medium). All our 
calculations will be in frame S which can then be transformed to frame S’ with the help 
of a Lorentz transformation. 

1249 



1250 G Murtaza, H U Rahman and M A  Rashid 

Due to the absence of the spatial dependence of the fields in frame S ,  Maxwell’s 
equations imply that the magnetic field B is constant and that the number densities of 
electrons and ions are equal, say N. Further, the curl of B equation is reduced to 

-E,&= J,. 
a=e, i  

We consider the special case B = 0. Then the relativistic BV equations for electrons and 
ions will be 

where U, and ui are the reduced velocities of electrons and ions respectively, defined in 
terms of the ordinary velocities U, and u i  by 

’Yaua 
U, =-, ya = ( 1 + u : y 2 .  

c 

Also Nfa(ua, t )  is the distribution function. Now, using E = -A and defining A, = 
-q,/m,c where qi = +e and qe = -e, the BV equation may be expressed as 

afa ‘ afQ -+A,A.-=O. 
at aua 

These equations have a general solution 

where F, is an arbitrary function of its argument; and U, -AaA is l /mac times the 
generalized momentum. Now 

NqaC av, 
fa ( U a ,  t )  d3ua = - - Ya Aa aA Ja = Nqac 

where 

Va = [l +(ua + A a A ) 2 ] ” 2 F a ( ~ a ) d 3 ~ a .  I 
Equation (1) may therefore be rewritten as 

.. W :  av, A + C - - = O  
a A: aA 

where ut = Nq:/EOma. 
The form of equation (6) is identical with that in Newtonian dynamics of a particle of 

unit mass with position vector A = (Ax, A,, A , )  under the conservative force field of 
potential 

2 

v = c  % v,. 
a A m  

(7) 

We may now rewrite equation (6 )  as 

.. a v 
aA 

A +-=O, 



Non-linear waves in a two-component hot plasma 1251 

Introducing cylindrical polar coordinates 

A = (d cos @, d sin @, A , )  

and assuming that the function F(u)  is isotropic so that the potential Vis a function of d 
and A ,  only, the above expression becomes 

.. h 2  dV &--+-=O 
d3 ad 

.. a v 
A,+-=O 

aA, 

&’&=h 

where h is a constant. 

3. Transverse waves 

For pure transverse waves, E, = 0 so that A,  is constant. In this case equation (1 1) in 
turn implies that d is also a constant. With constant d,  equation (12) under appro- 
priate initial conditions has a solution 

@=cot; w = h / d 2  (13) 
and equation (10) reduces to the form 

1 av * 
or 

av h 2  
a d - & ’  d a d - W ,  

There is thus in the S frame a monochromatic circularly polarized field of vector 
pot e ntial 

A = [d cos(wt), d sin(ot), A,] 

and 

E = d w  [sin(wt), -cos(wt), 01 

where d, A ,  and w satisfy the equations 

Transforming the results to the laboratory frame S’ again yields a purely transverse 
circularly polarized wave with velocity (0, 0, c /n)  and angular frequency w ’ .  The fields 
in the laboratory frame S’ will be 

E ’ =  Eb{sin[w’(t’-nz’/c)], -cos[w’(t’-nz‘lc)], 0} 

and 
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where the electric field amplitudes in S and S’ are related by 

Eolw =EA/@’= d. (17) 

The dispersion relation is obtained by determining w in terms of si? from (15) and (16) 
and then substituting it in 

w = (1 - n 2)1’2wr. (18) 

3.1. Dispersion relation in cold plasma 

The cold plasma results can be obtained by taking anisotropic streaming distributions, 
i.e. 

El (U, 1 = 8 (6, (77, 1s (5, - U, 0 )  

= (tu, vu, 5,) = (P, cos &, P, sin (b,, 5,) 

(19) 

(20) 

where 

and ua0 is the reduced streaming velocity given by 

The velocities ueo and uio are related through the momentum conservation equation as 

~ ~ ~ + p u ~ ~  = uo(constant), p = m e / m i .  (22) 

The function V,  now takes a simpler form 

V, = [ 1 + A  td2 + (U,O + A,A,)2]”2 A, 
say, so that 

and 

Now observing 0 2  = pwa and A i  = -PA,, and using equations (24) and (25), equations 
(15) and (16) become 

and 

Also 

3, = (1 + A ~ 2 ) 1 ’ 2 f l  
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where 

Therefore 

A, = (1  + A 3 2 + & ) 1 / 2  = (1  +A2&2)1/2(1 +fk2)1’2. 

Thus the dispersion relation (27) becomes 

Note that the ionic contribution which appears as an additive term can be significant, 
especially when the amplitude of the wave is large. 

3.2. Dispersion relation in hot plasma (first-order temperature correction) 

Unless the plasma is extremely hot, we may use a perturbation technique to calculate 
the first-order temperature correction to the cold plasma result of the previous section. 
To do this, we first transform the Cartesian variables of integration in the expression of 
Vu to the frame Sh which is moving with velocity (0, 0, vue) relative to S and then 
expand the integrand as a power series. The first-order correction is obtained by 
truncating the series at the quadratic terms. 

The Lorentz transformations are 

where 
2 -1/2 

yUo= ( 1  -?) and yh = yUo ( yu -: L). 

Also dl, = (y, /yh) dlh. Therefore drh dqh dfh/yh = d& dqu dlulyu. Further 
N,d;,~(&h, qh, ti)= NZu(&,  q,, 4,) where N,d;,o is the equilibrium distribution 
function in Sh. Also note that Nu = yuONao. The expression for Vu then becomes 

1/2 W 

Vu = I I 1 { 1 + (4: + A A ,  1’ + ( q h + A,A )2 + [ y, o ( l h  + vh) + A,A .] 2, 
-m c 

Now expanding the coefficient of Fa0 in the integrand as a power series in [h, qh and 
50: and then performing integration term by term, assuming Fa, to be isotropic, we 
obtain : 
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where 

Note that we have truncated the series at the quadratic terms, ignoring higher-order 
effects. Also A, is the zero-order term, which is the result for the cold plasma. Further, 
on differentiating equation (33)  we obtain 

Since the analysis is correct only to the linear terms in e,, it is permissible to 
substitute for A,  in the coefficient of 0, in equations (35)  and (36). The substitution 
made is the expression given by cold plasma results, i.e. equations (28) and (30). With 
these approximations, the above equations become 

where 

1 
2(1 +A$d2)(1 

PQ = 

Now substituting the above equations in (15) and (16) we obtain 

ye -9i+(QeOe-Qiei) 
Ae Ai 

and 

The next step is to eliminate A, so as to obtain w in terms of the amplitude of the 
w a v e d  only. In the circumstance that the waves are large amplitude, this is achieved by 
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squaring (41), using (23) and continuing to work only to the linear terms in 8,. After 
some algebra we obtain 

where we have assumed d2 >> 1, i.e. the waves are strong waves. Using the cold plasma 
expression for LZi we get 

so that 

This gives the dispersion relation for the large amplitude waves. Notice that the 
zero-order (i.e. cold plasma) term does not survive for such large amplitude waves. 
This is also obvious from the right-hand side of equation (3 1). The dispersion relation 
in S' is obtained by using (18): 

where r = (1 - n2)-1/2. From the expressions for Q, and Pa, it is evident that Qi and Pi 
can be large compared to Qe and Pe respectively. We may therefore conclude that the 
ionic contributions can be significant unless the ion temperature is negligibly small. 

3.3. Dispersion relation for weak waves with first-order non -linear correction 

In this section we treat the amplitude of the wave as a small parameter, and then use the 
perturbation technique to determine the dispersion relation incorporating a first-order 
non-linear correction, with the temperature in this case unrestricted. To be explicit, we 
shall expand V, in powers of d and A, and then truncate the series at terms of order 
d3.  With this V,, we calculate its differentials aVa/ad and aV,/aA, and then 
substitute them in equations (15) and (16). This will yield the desired dispersion 
relation. 

For convenience we use the cylindrical polar coordinates U, = 
(pp cos 4,, p, sin q5,, Sa) and adopt the notation 

(Pb,, 4,, 5h- 1) = 5 Pb,, 4,, la )Fa (U,) d3u, 

for an arbitrary function P of U,. 
Note that if P is independent of q5 then 

(P cos3 4,) = (P COS 4a)  = 0, 

(P cos4 4,) = :(P). 

V, = P a )  (46) 

(P cos2 4,) = +(P) 
and 

We first observe that the potentials V, (equation (5)) in the new notation take the form 
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where 

Therefore 

and 

--=( 1 av, 1 + (pa  COS ~ , / A , ~ F B )  
A:& ad D, 

Neglecting the terms of higher order than d3  it is found that 

(47) 

(48) 

where we have assumed that A, is of the order of d2.  This assumption is indeed true for 
cold plasma, as may be seen from equation (28) and is verified a posteriori for the plasma 
(see equation (5  1)). 

Hence, to the order d2  

(50) 
1 aVa A,A, la A2d2+2AaAl 3 A 2 d  pa +- 1- =+ 

Here we observe that ( l i /yi)  = (le/ y e )  because from equation (l), it is clear that 
Je+Jilat A = O  = 0. That is: 

--= - 
Aa ( Y ,  Y a (  2Y: 

Therefore the relation (15) determines A, as 

Also to the order d2, it is found that 

Now using (51) and (52) in equation (16) we get 

w / U  = Xo - iX,A id2 

where 
(53) 
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Note that the effects of the ionic motion stand out in the coefficient of p and taking 
p = 0 gives the old results for the one-component plasma. 

In the frame S’ the dispersion relation takes the form: 

n 2 =  1 -T(X, -~X,A,Zop2)(W~/W‘)2 .  (56) 
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